EE215 – FUNDAMENTALS OF ELECTRICAL ENGINEERING

Tai-Chang Chen University of Washington, Bothell Spring 2010

EE215

WEEK 10 SECOND ORDER CIRCUIT RESPONSE

June 4th , 2010

© TC Chen UWB 2010 2

1

PARALLEL RLC CIRCUITS: UNDERDAMPED VOLTAGE RESPONSE

- $\alpha^2 \omega_0^2 < 0 \rightarrow$
- We could use the same approach as in the overdamped case $(\alpha^2 \omega_0^2 > 0)$ and determine $v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$
- But it is more convenient to rearrange the solution and avoid the complex numbers.
- Euler identity:

EE215

© TC Chen UWB 2010 3

PARALLEL RLC CIRCUITS: UNDERDAMPED VOLTAGE RESPONSE

PARALLEL RLC CIRCUITS: UNDERDAMPED VOLTAGE RESPONSE

• Let

- Note that B_1 and B_2 are real (i.e., not complex!) because A_1 and A_2 are complex conjugates.

- Determine **B**₁ and **B**₂ :

• $V_0 = 0V, I_0 = -4A$

•

© TC Chen UWB 2010

© IC Clien Owb 2010

5

EE215

UNDERDAMPED PARALLEL RLC CIRCUIT EXAMPLE (2)

• What is v(t), $t \ge 0$?

EE215

CHARACTERISTICS OF THE UNDERDAMPED RESPONSE

• $v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$

- Without damping,
- Damping reduces
- Damping reduces

CRITICALLY DAMPED RESPONSE OF THE PARALLEL RLC CIRCUIT

- $\alpha^2 = \omega_0^2$
- Our previous approach does not work in this special case.
 - This equation cannot be the solution for all initial conditions of V_0 and I_0 (there is only one parameter).

EE215

© TC Chen UWB 2010 9

CRITICALLY DAMPED RESPONSE OF THE PARALLEL RLC CIRCUIT

The solution of the critically damped circuit is given by

• We will not derive this formula here.

© TC Chen UWB 2010 11

EE215

FF215	© TC Chen UWB 2010	13
EEZIJ		10

STEP RESPONSE OF THE PARALLEL RLC CIRCUIT

- This analysis leads to the same characteristic equation as in the natural response.
 - \rightarrow Voltage v(t) has the same solution form.
- As in natural response, we get with
- The solution for overdamped, underdamped, and critically damped responses are analogous to the solutions of the natural response.

WHAT ABOUT THE BRANCH CURRENTS?

*i*_L is particularly interesting because *i*_L(∞) ≠0 in general.

© TC Chen UWB 2010

15

EE215

EXAMPLE: STEP RESPONSE OF THE PARALLEL RLC CIRCUIT (2)

- As the capacitor charges up:
- In steady state:
- The way this steady state is reached depends on the damping of the circuit:
 - Many oscillations
 - Steady rise and fall
 - Very gradual approach

EE215

© TC Chen UWB 2010 17

EXAMPLE: STEP RESPONSE OF THE PARALLEL RLC CIRCUIT (3)

• The example above is overdamped:

- Roots of characteristic equation:
- •
- Current through inductor:

SUMMARY: NATURAL AND STEP RESPONSE **OF PARALLEL RLC CIRCUIT**

Damping Equation

Coefficient Equations

Over

$$v(t) = v_{\infty} + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
 $v(0) = v_{\infty} + A_1 + A_2$

 Over
 $v(t) = v_{\infty} + A_1 e^{s_1 t} + A_2 e^{s_2 t}$
 $v(0) = v_{\infty} + A_1 + A_2$

 Under
 $v(t) = v_{\infty} + e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$
 $v(0) = v_{\infty} + B_1$
 $v(0) = v_{\infty} + B_1$
 $dv / dt(0) = -\alpha B_1 + \omega_d B_2$

 v(0) = v_{\infty} + D_1
 $v(0) = v_{\infty} + D_2$

 Critical
 $v(t) = v_{\infty} + (D_1 t + D_2) e^{-\alpha t}$
 $v(0) = v_{\infty} + D_2$

Note: For natural response, $v_{\infty} = 0$ and A_1 , $\rightarrow A_1$, etc.

EE215

NATURAL AND STEP RESPONSE OF THE SERIES RLC CIRCUIT

- KVL:
- Differentiate:
- Rearrange:
- Characteristic equation:

© TC Chen UWB 2010 19

SOLUTIONS TO THE CHARACTERISTIC EQUATION

- Neper frequency:
- Resonant radian frequency:
- The solution for the serial RLC circuit has the same form as for the parallel RLC circuit.

EE215

© TC Chen UWB 2010 21

SOLUTIONS TO THE CHARACTERISTIC EQUATION

- Overdamped $\alpha^2 > \omega_0^2$: $i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$
- Underdamped $\alpha^2 < \omega_0^2$: $i(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$ Critically damped $\alpha^2 = \omega_0^2$: $i(t) = D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}$

	Parallel RLC	Serial RLC
Char. eq.	involves v	involves <i>i</i>
α	_1	R
ω ₀	2 <i>RC</i> 1	2L
	$\sqrt{L0}$	\overline{C}
damping	compare α^2 and ω_0^2	

STEP RESPONSE OF THE SERIES RLC CIRCUIT

- Note: characteristic equation remains the same.
- KVL:
- This equation, again, has the same form as the condition on $i_{\rm L}$ in the parallel RLC circuit.

EE215

© TC Chen UWB 2010 23