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PARALLEL RLC CIRCUITS:
UNDERDAMPED VOLTAGE RESPONSE

• 2 – 0
2 < 0   

• We could use the same approach as in the 
overdamped case (2 – 0

2 > 0) and determine 
v(t) = A1 es1t + A2 es2t 

• But it is more convenient to rearrange the 
solution and avoid the complex numbers.

• Euler identity: 
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PARALLEL RLC CIRCUITS:
UNDERDAMPED VOLTAGE RESPONSE
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PARALLEL RLC CIRCUITS:
UNDERDAMPED VOLTAGE RESPONSE

• Let 
– Note that B1 and B2 are real (i.e., not complex!) 

because A1 and A2 are complex conjugates.

•

• Determine B1 and B2 :

•
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UNDERDAMPED 
PARALLEL RLC CIRCUIT EXAMPLE (1)

• R = 2500

• L = 189.3mH

• C = 125nF

• V0=0V, I0 = –4A

RLC v

–

+
iC iL iR

V0

–

+

I0
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UNDERDAMPED 
PARALLEL RLC CIRCUIT EXAMPLE (2)

• What is v(t) , t  0 ?

© Karl F. Böhringer/TC Chen Spring 2009
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CHARACTERISTICS OF THE UNDERDAMPED 
RESPONSE

• v(t) = e–t (B1 cos dt + B2 sin dt)

• Without damping,

• Damping reduces 
• Damping reduces 
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CRITICALLY DAMPED RESPONSE 
OF THE PARALLEL RLC CIRCUIT

• 2 = 0
2

• Our previous approach does not work in this 
special case.

–

– This equation cannot be the solution for all initial 
conditions of V0 and I0 (there is only one parameter).
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CRITICALLY DAMPED RESPONSE 
OF THE PARALLEL RLC CIRCUIT

• The solution of the critically damped circuit is 
given by

• We will not derive this formula here.
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CRITICALLY DAMPED 
PARALLEL RLC CIRCUIT EXAMPLE (1)

R = 250, 

L = 50mH, 

C = 0.2µF, 

V0=12V, I0 = 30mA

RLC v

–

+
iC iL iR

V0

–

+

I0
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CRITICALLY DAMPED 
PARALLEL RLC CIRCUIT EXAMPLE (2)

tt etetv 000,10000,10 12000,270)(  

0 0.2 0.4 0.6 0.8 1

x 10
-3

-8

-6

-4

-2

0

2

4

6

8

10

12

t

v

R=250

0 2 4 6 8

x 10
-4

-6

-4

-2

0

2

4

6

8

10

12

14

t

v

R=200

0 0.2 0.4 0.6 0.8 1 1.2

x 10
-3

-15

-10

-5

0

5

10

15

t

v

R=300

0 0.5 1 1.5 2 2.5

x 10
-3

-15

-10

-5

0

5

10

15

t

v

R=600

critically damped overdampedunderdamped

EE215 12
© TC Chen UWB 2010



6/1/2010

7

STEP RESPONSE OF THE 
PARALLEL RLC CIRCUIT

• Step response: sudden application of current 
source

• KLC:

• Rearranging:

• Derivative and divide by C:

iC iL iR

t=0
RLC v

–

+

I
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STEP RESPONSE OF THE 
PARALLEL RLC CIRCUIT

• This analysis leads to the same characteristic equation as in the 
natural response.
–  Voltage v(t) has the same solution form.

• As in natural response, we get
with

• The solution for overdamped, underdamped, and critically 
damped responses are analogous to the solutions of the natural 
response.
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WHAT ABOUT THE BRANCH CURRENTS?

• iL is particularly interesting because iL() 0 in 

general.
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EXAMPLE: STEP RESPONSE 
OF THE PARALLEL RLC CIRCUIT (1)

• C=20nF,  L=25mH,  R=400,  I=24mA, no energy stored

• Some general comments:
• At t = 0–, v = 0 and iL= 0. 
• Inductor 

• Capacitor  

iC iL iR

t=0
RLC v

–

+

I
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EXAMPLE: STEP RESPONSE 
OF THE PARALLEL RLC CIRCUIT (2)

• As the capacitor charges up:
–

• In steady state:
–

• The way this steady state is reached depends on 
the damping of the circuit:
– Many oscillations 
– Steady rise and fall 
– Very gradual approach 
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EXAMPLE: STEP RESPONSE 
OF THE PARALLEL RLC CIRCUIT (3)

• The example above is overdamped:

• Roots of characteristic equation:

•

• Current through inductor:
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SUMMARY: NATURAL AND STEP RESPONSE 
OF PARALLEL RLC CIRCUIT

Damping Equation Coefficient Equations
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Critical

Note: For natural response, v = 0 and A1’  A1, etc.
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NATURAL AND STEP RESPONSE 
OF THE SERIES RLC CIRCUIT

• KVL:

• Differentiate:

• Rearrange:

• Characteristic equation:

R L

C V0

–

+

i
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SOLUTIONS TO THE 
CHARACTERISTIC EQUATION

• Neper frequency:

• Resonant radian frequency:

• The solution for the serial RLC circuit has the 
same form as for the parallel RLC circuit.
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SOLUTIONS TO THE 
CHARACTERISTIC EQUATION

• Overdamped 2>0
2:

• Underdamped 2<0
2:

• Critically damped 2=0
2:

Parallel RLC Serial RLC
Char. eq. involves v involves i


0

damping compare 2 and 0
2
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STEP RESPONSE 
OF THE SERIES RLC CIRCUIT

• Note: characteristic equation remains the same.

• KVL:

• This equation, again, has the same form as the 
condition on iL in the parallel RLC circuit.

i

t=0

vC

–

+vR –+ vL –+

R L

C+
–

V
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